Abstract

This paper describes the design and architecture of an
automatic code synthesizer we call the ACG. The input to
the ACG isalist of facts that must hold for the generated
code, along with domain-specific knowledge (design rules
and patterns). The facts are writ ten by the application pro-
grammer. ‘|"he design rules arc provided by the system
architects. The ACG derives and emits code, currently
C++, using an experl system to perform the reification.
The ACGisin daily usc, supposting development of mis-
sion-critical software. It produces about 40% of a
150K1.0C product, replacing approximately onc staff pro-
grammer position,

1NTRODUCIION

Background

This paper describes an antomatic code synthesizer called
the ACG. The ACG ispart of an ongoing effort within the
ZIPSIM project at JP1. to increase programmer productiv-
ity and software product reliability.

The charter of the ZIPSIM project isto create high-perfor-
mance spacccraft emulators. A ZIPSI M emulator consists
of anumber of component models, each with afull-fidelity
interf ace and arbitrary code (usually C++) to implement
the interlace. The models are put into the ZIPSIM frame-
work, which provides mul t i-processor scheduling, runt imc
model creation, interconnection establishment and break-
down, graphical and line-oriented user interfaces, and so
on. The usual purpose of aZIPSIM emulator isto execute
unmodified flight software binaries on the emulator such
that the software behaves just as it would on flight hard-
ware.

Motivation

‘1 he goal of the work wc describe here is toincrease pro-
grammer productivity in two ways:

= T'he programmer need only provide a concise list of
facis that describe the needed code, rather than write
the code itself; and

¢ Thestructure of the factsis designed to al low a nun)-
ber of possible implementations, so that significant
redesign of the product may be accomplished by d ter-
ing only the design roles, rather than manually alter-
ing al code impacted by the redesign.

The programmer provides a concise list of facts that apply
10 the code that is going to be generated. The tool then

The work deseribed in this paper was carried out atthe Jet ropulsion
I aboralory, Califoriia Institute of "lechnology, under a contract with the
National Acronautics and Space Administration.

AN AUTOMATIC CODE SYNTHESIZER
WK. Reinholtz
Jet Propulsion 1aboratory

Cdifornia Institute of ‘fechnology
Pasadena, California9l 109

uses those facts and a Jwc-existing set of design rolesto
write the code for the programmer. Productivity is
increased because (@) the programmer only writ es facts
about the code to be generated, rather than the code itself;
and (b) the programmer need not be intimately knowl-
cdgable of the design rules; and (c) the crier rate is lower
and thus less timeisrequired for bog fixing.

The programmer- provided facts arc as much as possible
independent of the design rules u sed to create the output
code. It is thus practical to implement a significant rede-
sign simply by rewriting the design rules. The code can
thus be evolved Iess expensively and more reliably, to
meet changing requirements or to utilize improved tech-
nologies'.

Related work

Synthesis techniques can be applied to the whole. software
life-cycle[Setliff93], outlined below.

¢ Requircment - A description of the desi red behavior is
used to create a specification;

* Design - A software design is synthesized from a
specification;

¢ Implementation - Code is synthesized from a design;
¢ Verification - Test cases are generated automatically;

« Maintenance - Mainicnance is cased because design
rules arc captured.

Onr work spans all but the verification phase described
above, though the different i at ion bet ween phasesis differ-
ent: The ACG uses facts about desired code and design
roles as input, and emits an implementation, The facts
describe attributes that the code must have, but do not
specify behavior or design: those arc captured in the
design rules, so they may be easily altered.

Yellin and Strom | Yellin93] describe asynthesizer that
creates adapl ors bet ween components that arc functional ly
compatible but are not type compatible. Our ACG pro-
vides this capability, but it can also be configured to cause
type compatibility via inheritance instead of adaptors,
should that be desired. in either case, the facts and code
writ ten by tbe programmer need not be modified.

Synthesis should not be confused with automatic code

1. We have used this capability several times, and it
worked asadvertised.

generat ion, which translates a graphical or textual higher-
level language. into lower-Icvc] code. This was a popular
topic some years ago. Sec e.g. [Razdow 1982,] as an exam-
ple.

The history of the ACG
‘she ACG wasimplemented because we observed that a
significant amount of the code in a previous version of our
product, though complicated, was essentially pro-forma
once the design rules were understood. Unfortunately the
design rules were (and still arc) sufficiently complicated
that it often took days of struggling to learn thcm wc]]
enough toapply them!, and the application itself was
ted ious and error-prone. Worse yet, each programmer
went though the cycle a number of times, because each
soft ware component created by the programmer required
another application of the design rules.

Qur initial goal was to write a set of development proce-
dures that embod ied the design rules, so that the program-
mer would be aided in the correct application of the design
roles. Que intent was that the programmer would bc
guided towards the creat ion of aset of facts about the code
to bc writ ten, and then would usc the development proce-
durcs(structured asaseriesof Il . . . THEN . . . I4.SK . ..
LNDIF rules in procedural handbook st ylc [Wieringa921),
in conjunction with the facts to write the code.

1t soon became clear that the procedures themselves would
bc quite extensive and complicated, so wc considered
writing a too! that developed customized procedures. The
tool was to take as input certain facts about the code to bc
writlen, automatically determine which procedures were
applicable, and finally emit a customized procedure for the
programmer to follow. Wc discussed the use of an expert
system as the basis of this automatic procedure synthesis
tool.

Finally (afcw days later), wc observed that if wc could
automatically derive the procedures, perhaps we could
automatically apply thcm as well. The answer to this ques-
tion turned out to be “yes’. and the ACG as described here
was born.

Qutling of the paper
The following section describes the software product to
which the. ACGs was applied. Wc nex t provide an overview
of the operat ion of the ACG, then we exam inc it's input
and output products in some detail. Next wc discuss the
CLIPS expert system that we used as the basis of the ACG
inference engine, and the architecture of our CLIPS rule-
set. 1i na |y, wc present some measu rements as to how

1. Programmers more than once referred to the pro-
cess as “painful”.

much of the total body of codc iSactually gene.rated by the
ACG.

Z1PSIM Architecture
‘1 ‘his scction describes those Z1PSIM architectural details

that should bc understood in order to case reading of this
paper.

ZIPSIM consists of a number of components, connected
viastrongly-t yped spfices. 1iach component asa’1 cl1
|Oster93 1 interpreter wrapped in a class called SimTel,
Interpreters communicate. with amongst themselves viaa
connectionless R1'C-like protocol mechanism, embodied
ina'lcl command called simscnd.

¢ Component - A component is an object. augmented
with certain mandatory interfaces that support compo-
nent creation, registration, communication, and dele-
tion. If acomponent has certain optional interlaces
that connect it with the emulation scheduler, it isalso
amodel. Components arc named and registered in a
central database.

¢ Splice - A spliceis ahigh-performance component
interconnection. Unlike simsend, splices are point-to-
point and connection-oricnted., Splices arc strong] y-
t ypcd, so syntactic correctness of connect ions is
enforced by the ZIPSIM framework. Iiach splice as a
master, which originatesi/o requests, and a slave,
which responds to the requests. In RPC notation, the
master is the client, and the slave is the server.

¢ Simlcl - SimTelisaC++ wrapper we place around
‘el that provides an interface more compatible with
C4+development, ant] is also augmented to make 'Icl
safe in amulti-threaded environment, Kach instance
of Sim’Icl has a name and is registered in a central
dalabase.

® simsend - Simsend isused to execute a’lcl command
on anamed Sim'lcl object. It may bc used by any
Sim’I'cl to execute a command upon any other Sim'lcl.
1thas lower performance than a splice intesconnec-
tion, but since it docs not require splice establishment
machinery, it is more convenient to usc and is appro-
priate where performance is not critical. Note that
simsend is not the Tcl/I'k “send” command. The lattet
has subst ant ially lower performance but can commu-
nicate bet ween ‘Tel interpreters that arc execu ting on
different machines. Simsend dots not operate across
the network .

ACG OVERVIEW

The ACG consists of two software components. a specifi-
cation compiler, which translates specifications into facts
for the inference engine; and the inference engine, which

synthesizes C4+ code from the facts and roles.

The specification compiler takes as input a file containing
human-readable facts about the component being built,
and emits facts formatted as input for the inference engine.
No inference is performed at this point: the contents of the
input file d i rect1y imp] y the contents of the output file. We
avoid inference in this phase so that the system design
rules do not become scattered amongst the various ACG
subsystems,

‘1 he inference engine. takes as input the output of the spec-
ification compiler, and produces C++ source code. The
per-component facts arc combined with sysicm-wide facts
and rules, using CLIPS [Riley91] expert system {ool to
perform the inferences.

The following steps summarize a complete ACG usage
Cycle:

« 1.'The developer puts component specifications into
<file>.nspece.

* 2.< file> .nspccis processcdby factgen.sh,andpro-
duces <fi le>.nfacts. Note this translation does not usc
any input other than <file>.nspcc.

e 3. Theinference engine, filegen.sh, processes
<file>.nspec and generates a number of C4 4 files. The
processing may cause a number of other nspec files to
be read to provide the information required to gener-
ate the C++ code.

ACG INPUT
‘Jhe specificat ions are structured as acomprom isc bet ween
case of input and interpretation on humans, and ease of
processing by software tools. Our first inclination was to
use a notation that did not imply any particular processing
language. It soon became clear that if we were to offer a
powerlulinput not a ion, we'd either have to invent our
own language, or use an existing one.

Weselected el as our specification input language,
because (@) it's adequate; and (2) we already depend on it
and have some ski Il in its application . Some developers
have used this to their advantage, by writing shorthand
specification items, which expand into perhaps several
actual specification items.

1 ‘achspecificat ion item has a comment ficld, which is
inserted into the fact database along with the fact itself,
The comment is used for several purposes. For certain dat a
items (e.g. C++ function and variable declarations and
definitions) it becomes the C+4 comment associated with
the item in the output C-++ code. 1 ‘or others, it forms the
basis of ahelp-text system. Finally, al such comments arc

1. We have not regretled this decision. In fact it till
appears to have been the right thing to do.

fodder for automat ic document generation?.

‘I ‘here arc many specificat ion items that maybe (and some
that must bc) used. The following lists some of the more
significant ones., and what code is generated by the items.

¢« 'I'hc name of the component - The nameisusedin
many places, inducting the C++ class declaration,
function definitions, and registration of individual
instances of the component type.

¢« Member functions and variables - The ACG must cre-
ate the C++ class declaration, as it controls the archi-
tecture up to and beyond the basic class inheritance
structure. Assuch, all member data and member func-
tions must be specificd to the ACG. That is the pri-
mary purpose of th is specification item. A side effect
of this item isthat the ACG can be used to create doc-
umentat ion describing cach member function and data
item, which has proven useful.

¢ Splice t ypcs and names - Components may include
splice capability. This specification item specifics the
various splice types to be implemented by the compo-
ncnt, ant] the name of each port of each type. Thisis
used to create alarge amount of interface code.

e Simset - Simsetisa’lcl command that provides
access to component C++ variables. The ACG can
generate al code to do so for most data types. Some
developer assistance is required for structured data
items.

ACG Input examples

The following example. shows a data specification item of
low complexit y:

c {

Non-blocking Siml'cl lock .

| f SimTelisn’ t 1 ocked,lock it

and ret.urn zero. 1 Titis1ocked,

ret urn non- zero .

} fdecl] ockpthenlock public stat i «
“i nt FUNC” “woid” “woi cl” normal

not virt ual

‘The first word following the comment list is always the
type of the specification item being declared, in thiscase a
function. The following parameters describe theitcm in
detail sufficient to allow generation of the. necessary C++
code.

'The above exampleis fairly simple, in that the translation

2. Wc have noted that programmers often initially
neglect to fill in the comment field, then must go back
later and add the comment so asto allow usc of e.g.
automatic document generation.

issomewhat obvious and trivial, Consider, however, the
following cxamples:

¢ {The CPU regi st ers Qgsimset R rw
uintlé o 31
¢ {The 1 C} gsimsetl ¢ {RIC)} rw

uintl6é

1 <ach of these cause the creatio 1 of asignificant amount of
code.’ 1 ‘be. first causes asimset function to be create.cl in the
model (in this case a CPU) that provides ‘I¢cl access to the
register away RI10..31], with read ant] write capability. The
second example aiases a particular register (the 1C,
instruction counter), so the user does not need to remem-
ber it's numeric index’.

Fach of these lincs causes perhaps adozen lines of C++ to
be generated. There arc hundreds of variables that can be
accessed in this manner. By using the ACG to create the
interface code, we can ensure uniform range checking,
input type checking, implementation style, and so on. Qth-
erwisc each programmer would be requ ired to do each of
these things independently, for each variable. Fach
instance of such code would provide another opportunity
for amistake to be made,

By using tbc ACG to generate this code, we gain in two
ways. (J) if a dozenor so lines of ACG code arc correct,
then hundreds of lines of C++ code arc correct; and (2) if
wc decide to | mplement simset different] y, we need only
change afcw lines of ACG code, rather than hundreds of
lincs of C+4 code.

ACG OUTPUT

Quiput products
The ACG emits a number of C++ header (“h") and code
(*.C") files for cach component. The name of each is
mechanical 1y derived from the name of the component
ant] the purposc of thc contents of the individual file. ‘I'he
following enumerates the types of files written by the
ACG.
¢ Class declaration, This file must be automatically
generated, because some of the coding under the con-
trol of the ACG requires that class members be
declared and that certain parent (s) arc specified.

Component creation and deletion. This code, much of
it boi lerplate, isrequired tosupport our component
arch itecture. The code that registers components upon

J. Wc have considered causing the act of declaring a
variable to also cause its simset specification to be
asserled, so all variables would be automatically
accessible via'lcl. We have not yet done so, for Jack
of time.

creation and unregisters upon deletion is boilerplale.
The code to initialize the component is not boiler-
plate, asit may involve arbitrary code fragments,

¢ SimTclcreat ion ant] deleti on. I<ach component has a
Telinterpreter, wrapped in a class called SimTel. This
file contains the code that handles much of the. book-
keeping required of this design, 1t aso contains code
that, for each component class, creates a static Sim'l¢ |
associated with that class that’s used to spawn
instances of the component class in the “exemplar”
style of e.g. Self [Ungar871°,

¢ Splice connection establishment.

« instalation of ‘Iclcommands. It istbc nature of ‘Icl,
and so Sim'l¢l, that commands that arc written in C++
arc cl ynam ical | y registered with the interpreter (as
opposed e.g.to a conlJ~ilc-time lookup table). This{ile
contains the code that registers all Tcl commands, It
also contains code that, for each command, registers
the help-text Of the commandwith the help sub-
syslem,

¢ Automatically y-gencrated el commands. Sonic ‘Il
com mands,c.g. those t hatare used for component
creation and deletion and those that arc used for splice
cst ablishment and breakdown, arc automat ical | y
defined as well as automatically declared. This file
contains such defi nit ions.

Oulput technigues

The bulk of the code generated by the ACG is created
using onc of four techniques, cnumerated here.

¢ Direct code creation - This is the most powerful tech-
nique. An algorithm within CI.1PS is used to con-
struct the code, using a combination of procedural and
rule-bascc] techniques. This method is reserved for
applicat ions where the requ i reel code does not exhibit
a structure that may be exploited by simpler tech-
niques.

¢ #ldefine/Minclude - The ACG writes a file. that uscs the
C4+ preprocessor “#define” to define certain macros,
then uses “#include” to include afile that becomes
customirzed according to the defined values. This tech-
nique is quite useful when the desired code productis
sufficientl y regular, because the ACG need only cmit
the necessary parameters, and because certain
changes may be implemented by modifying only the
include file, rather than making another ACG pass.

2. This ishow wc avoid explicit central registration of
all component classes. The static Sim'lc] registers
itself upon creation, thus automatically creating alist
of al Icomponcnt classes.

® Macro substitution - The ACG has a simple macro
subst itution capabi lit y, which takes asinput atem-
plate file, and emits the template with certain tokens
within the template replaced by ACG-specified val-
ves. This is an early ACG feature and has for the most
part been replaced by the #define/#inchldc mecha-
nism, because the lat ler is more poweiful by virtue of
its conditional constructs (#if . . . #endif) and better-
control led recursive macro evalu a ion, and the former
offeted no significant advantages with respect to the
latter.

¢ String substitution - This method is similar to macro
substitution, but rather than using an input file and an
auxiliary macro subslitution program, it is internally
implemented and operates on strings. We often usc
thisto generate code fragments.

ACG INFERENCE ENGINE

Wc used the Cl .IPS[Riley91] forward-chaining expert sys-
tem development tool, developed by NASA, to implement
the ACG inference engine. We first briefly describe
Cl.IPS, then we describe our use of Cl.IPS, and finally
some coding guide] incs that we found useful.

Bricf description of C1IPS

Clips has been described elsewhere in the literature, We
thns only briefly, informally, and incompletely describe it
to aid the rcader in understanding this paper.

CLIPS takes as input facts, and rules. The CLIPS infer-
ence engi ne repeated ly m atchesthefactstothe rule predi-
cates, and for each rule that fully matches, the rule is
schedvled for evalvation. The evaluation among other
things may came other facts to be asserted and/or deleted,
modification of the matching facts, values to be assigned
to global variables, and i/o to be performed.

A fact isan ordered list of values. The first valueisthe
type of the fact, and the remaining values together repre-
sent the value of the fact. Fach position in the list may be
given aname, thus providing something of a traditional
record data structure.

A rule has apredicate (in Cl .IPS notation, the “left hand
side,”, or 1,11 S), actions (the “right hand side”, or RHS),
and salience. When the predicate of a rule is satisfied by
somg set of facts, therule is scheduled for evaluation,
which wi | | cause the actions of the rule to be executed.
Salience determines in part the order in which rules sched-
uled for execut ion arc executed: The greater the salience,
the earlier the exccution, al other things being equal.

Inessence, CLIPS repeatedly identifies a rule that has a
predicate that can be satisfied by existing facts, then exe-
cutes the actions associated with the rule. If more than onc
ruleiseligible. for execution, a conflict resolution mecha-

nism is used, which sclects arule by onc of severa priori-
tization schemes.

The design of the ACG ruleset

The ACG inference engine excretes in three distinct
phases, controlled by rule salience: reification; code emis-
sion; and output file iteration. The reification is done once
for agiven set of output products. Code emission and file
iteration occur for each output file,

Reification consists of inferring all facts that arc implied
by the initial facts and given rules, It is done first, and
once, so that code emission and file iteration (both irre-
versible) do not have to be back (racked. If we a lowccl
factsto be asserted during code emission, and any of those
facts could imply changes to previously-cmittecl code,
backpacking wou Id be necessary. Wc have no mechanism
for such backtracking, and imagine it would be quite diffi-
cult to implement, so wc instead avoid the problem.

We used the CLIPS ndc-based notation to express most of
the cock emission algorithms, so some emission rules
assert facts that control other emission rules. Such facts
have names that make it clear that they are only to be used
for that specialized purpose, and by convention each is
restricted to appearing in avery few rules (typically only
onc rule asserts such afact, and only rule uscs the fact in
it's predicate). Our goa was to allow the use of rule-based
algorithms, yet to ensure that rules asserted during the
coursc of code emission could not have impacted previ-
ously-cmitted code.

Wc would have preferred to avoid ANY modificat ion of
tbc fact database during code emission. It would have then
become possible to implement an automated check for fact
modification during code emission. However, Cl IPS isan
expert system, SO its programming style tends towards the
rule-based?. It would have been difficult to implement the
code emission agorithmsin the CL.IPS procedural nota-

t ion, and the. code would have been obscure as compared
to the rule-based notation,

After some painful debugging experiences, wc starled rou-
tincly tagging each fact with what amounts to it's gencal-
ogy. We found this to great ly case the problem of
understanding exactly how the emitted code came to be as
it was. For example, if a C++ function declaration fact is
automatically gencrated, we put into the function com-
ment field, the name of the rule that created the fact. If a

1. The astute reader will note we thus lied in the pre-
vious paragraph rc: facts asserted first, and once.

2. CLIPS rules have a lisp-like appearance, but CLIPS
docs not provide anywhere near full lisp functionality.
We would have preferred it otherwise.

later rule were to e.g. add another formalargument to the
function declaration, the name of that rule would be
appended to the list of rules that modified the fact. In this
way asimple (and, wc have found, quite useful) execution
trace is provided].

A preliminary version of the ACG did not include the file
i teration phase. Instead, afler facts were elaborated, it
attempted to write dl output files at the same time. This
did not scale well, because both adding capabilities to the
ACG, and adding components under the control of the
ACG, caused the number of output filesto increase. Wc
soon reached a point where the operat ing system could not
support the number of simultancousl y opened files that the
ACG required. We then implemented a file iteration
scheme, whereby only afew files are opened at any onc
time.

We were concerned that it would be difficult to arguc the.
correct noss of the ACG. *J"bough wc conjectured that most

errors would cause subsequent compilation or linking fail-

lures and thus could not threaten the quality of the execu -
ablc code, they certainly could prove difficult to find and
fix. We were thus motivated to structure rules such that
errors were likely to be avoided, and if not, so they could
be easily identificd and fixed.

COST ANAI YSIS

The ACG isshown to have saved about 2(J work-months,
worth about $300K. The savings is increasing with time.
The total investment in the ACG was about two work-
months.

Cost to build the ACG

The fi rst version of the ACG was created by the author
over aperiod of about two weeks in car] y 1994. After
some months of usage, it was completely rewtit tenin
November 1994 by the author in another threc weeks,
resulting in the system described in this paper. Minor
improvements and additions have been made since then.
The total investment, including subsequent maintenance,
isabout two work-months.

Cost savings from vse of the ACG

As of early December 1995, ZIPSIM consists of atotal of
147K1 .OC of code,thus:

53K1.0C automatically gencrated by the ACG.
74K OC manually written.
20K1.0C recycled.

1. Inretrospect we should have made such trace infor-
mation an explicit field of each fact, rather than use
the. ad hoc method presented here.

Ignore the recycled code and assume that all code that is
now automatically generated would have otherwise been
manually written at roughly the same cost as the other
manually-written code.

74K 1 .0C of Z.IPSIM has been manually written, in about
50 work-months, thus productivit y was about J .SK1,0C/
work month. The ACG accounts for 53K1.0C of code, o
about 35 work-months at that same productivity. ‘1" here are
about J OK 1 .0C of specifications. Assume it's twice as
hard to write aspecification Jinc asit isa C-t + code line.
The specifications thus took about J3 work-months to cre-
atc. Since it cost only 2 work-months to create the ACG, it
hassaved about 20 work-months, worth about $33(JK.
Basically, it replaced at least onc programmer.

Savings analysis

This section examines the strength of the savings argu-
ment made above, and provides an intuitive basis from
which the marginal utility of the ACG may be evaluated.

The ACG emits 53K1.0C of code based on 10K1 .OC of
specifications. The code is specifically intended to appear
more or less asit would if manually written. or the sake
of argument, let’ sassume aJinc of specification istwice as
difficult to write as aline of code. The ACG thus effec-
tively replaces (53-2%10=33) 33K1.0C of code.

Recalling that there arc 74K1 OC of manuall y-written
code, that means that for each manual K1.0C thereis(33/
74) 0.45K1.0C of effective automatic code (that is to say,
we’ve adready adjusted for the cost of the specification that
was used to create the code).’1 hus if there were no ACG,
each programmer wou |d have to write about 1.5 lines of
C++ for each line now written, That implics that for every
two or three program mers now on staff, there wou Id have
to be another one hired to write the code now produced by
the ACG. Given that it only took a couple of months to
create the. ACG, the savings claim seems reasonable.

In order for the ACG to have no marginal advantage, it is
necessary that the effort to write the specifications is at
least as great as the effort to write the code that is synthe-
sized from the specificat ions. As there arc 10K lines of
specification, and 54 Klines of code, that means that the
specification would have to be over five times more diffi-
cultto write than the code. Our experience is that thisis far
from true. In fact each line of specification is probably
about as easy to write as aline of code.

SUMMARY

We have presented the motivation for and design of a code
synthesizer that isin daily use. It produces over athird of
the ncw code in the product, and has proven highly cost-
effeclive, saving about $300K so far and providing more
savings every day.

ACKNOWILEDGEMENTS

The conceplt of atool to antomatically create procedural
checklists was born in April 1993, at Jims Burgers in Alta-
dena, California, during a lunch-time conversation

bet weerithe author and 1)r. George 1 uger of the Univer-
sity of New Mexico. Subsequent conversations with Bill
Robison of J1*1. Jed to the concept of s ynthesizing, code,
rather than procedure checklists. The members of the
Z1PSIM development team provided many idess as to

wh atcode could be ef fectivel y synthesized.

RUILERENCES
Oslter93 J K. Osterhout, Aa Introduction to Tcl
and Tk, AcJdison-Wesley, 1993.
Razdow82 A. Razdow, R. Hackler, and R. Smaby,

“Automatic code gencrat ion steps up
productivity”, Flectronic Design, pp.
163-167, December 1982.

Riley91 (i. Riley, “CLIPS: An Expert System
Building Tool”, Proceedings of the
Technology 2001 Conference, NASA,
1991.

Set 1if 193 1).E. Setliff, “Knowledge Representa-
tion and Reasoning in a Software Syn-
thesis Architecture”, IFEE
Transactions on Software Engincering,
vol.18, 1106, pp. 523-533, Junc 1992.

Ungar87 1). Ungar and R.B. Smith, “Self The
Power of Simplicity”, SIGPLLAN
notices, vol. 22, no. 12, December 1987.

Wicringa92 D. Wieringaa, C. Moore, V. Barmes, Pro

cedure Writing principals and practices,
Battelle Press, 1992.

Yellin93 .M. Yellin ant] R X, Strom, “Interfaces,
Protocols. and the Semi-Automatic
Construct ion of Softwarc Adaptors”,
Proceedings of OOPSLA 1994, pp. 176-
190.

